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ABSTRACT
Administrative data are increasingly important in statistics, but, like other types of data, may contain mea-
surement errors. To prevent such errors from invalidating analyses of scientific interest, it is therefore
essential to estimate the extent of measurement errors in administrative data. Currently, however, most
approaches to evaluate such errors involve either prohibitively expensive audits or comparison with a sur-
vey that is assumedperfect.We introduce the “generalizedmultitrait-multimethod”(GMTMM)model, which
can be seen as a general framework for evaluating the quality of administrative and survey data simultane-
ously. This framework allows both survey and administrative data to contain random and systematic mea-
surement errors. Moreover, it accommodates common features of administrative data such as discreteness,
nonlinearity, and nonnormality, improving similar existingmodels. The use of theGMTMMmodel is demon-
strated by application to linked survey-administrative data from the German Federal Employment Agency
on income from of employment, and a simulation study evaluates the estimates obtained and their robust-
ness to model misspecification. Supplementary materials for this article are available online.

1. Introduction

Register data and administrative records play an increasingly
important role in statistics (Wallgren and Wallgren 2007) and
policy (see, e.g., the Commission on Evidence-based Policy-
making, https://cep.gov/), and several authors recommend and
predict the increased use of “big data” (Entwisle and Elias
2013; Podesta 2014), including administrative register data
(Japec et al. 2015). Uses to date include studies of how agri-
cultural households affect land changes (Rindfuss et al. 2004),
voter turnout (Ansolabehere and Hersh 2012), or how peoples’
numerical ability relates to mortgage default (Gerardi, Goette,
and Meier 2013). However, there is evidence that register data
may contain considerable measurement errors (Groen 2012).
For example, Bakker (2012, p. 15) estimated that 24%of the vari-
ance inDutch official hourlywage recordswas randommeasure-
ment error, and Ladouceur et al. (2007, p. 275) suggested that
20% to 30% of osteoarthritis cases are not registered in Quebec
hospital administrative records, causing bias in prevalence esti-
mates. Themeasurement error present in administrative records
can severely bias and invalidate research results (Carroll et al.
2006; Saris and Gallhofer 2007; Vermunt 2010). It is therefore
essential to evaluate the extent of measurement error in register
data. (We use the terms “register data” and “administrative data”
synonymously to avoid repetition.)

The difficulty in studying error in register and administrative
data, however, is that there is often no “gold standard” measure.
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Some authors have suggested to link administrative registers to
a survey, assuming the survey contains no measurement error
(e.g., Yucel and Zaslavsky 2005). But measurement error in
survey data is widespread (Hansen, Hurwitz, and Bershad 1961;
Hansen, Hurwitz, and Pritzker 1964; Felligi 1964; Andrews
1984; Alwin 2007; Saris and Gallhofer 2007; Biemer 2011), and
is in fact often measured by taking administrative records as
the “gold standard” (e.g., Kapteyn and Ypma 2007; Kreuter,
Müller, and Trappmann 2010; Sakshaug, Yan, and Tourangeau
2010; Kim and Tamborini 2014). Thus, we often have two data
sources, both measured with error, and we are interested in
estimating the error in both.

Very few studies have attempted to estimate measurement
error in both survey and administrative data simultaneously.
Nordberg, Rendtel, and Basic (2004) discussed a longitudinal
latent Markov model of measurement error in income, but
again assumed the administrative register to be perfect in
cross-sectional data; Pavlopoulos and Vermunt (2015) applied a
similar latentMarkovmodel to unemployment data; and Bakker
(2012) and Scholtus, Bakker, and Van Delden (2015) estimated
measurement error using linear factor analysis. However, the
models used in these studies have several drawbacks when
applied to administrative register data. First, true values of the
variables of interest are often censored, zero-inflated, gamma,
count, or nominal, and thus models that assume normally dis-
tributed true values are not appropriate. For example, income
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is usually zero-inflated and occupation is nominal. Second, the
measurement error process in registers is likely to lead to non-
normal and nonlinear errors, yet many models used to study
measurement error assume linear and homoscedastic errors.
For example, top-coding of income causes nonlinear method
effects (Gottschalk and Huynh 2010), and it is often thought
that low earners over-report while high earners under-report,
yielding “mean-reverting” random errors (e.g., Kim and Tam-
borini 2014). Third, the measurement quality of administrative
data often differs over observations, yielding a mixture of mea-
surement models. For example, the records may be obtained
from a mixture of sources (Wallgren and Wallgren 2007), such
as both employer statements and employee self-reports, or the
variable may be more ambiguously defined for some cases than
for others: the income of day laborers is an example. Earlier
approaches have not accounted for such heterogeneity. Cur-
rently, then, there is no generally applicable method to evaluate
the extent of measurement error in register and survey data.

Our contributions to the literature are threefold: first, we
present a framework for simultaneously estimating measure-
ment error in register and survey data that addresses the
shortcomings of earlier methods. Second, we evaluate the finite
sample performance of this model, as well as its robustness
to misspecification of key assumptions. Third, we apply this
framework to an important official register from the German
Federal Employment agency. Section 2 introduces the modeling
framework used to estimate the extent of measurement error
in survey and register data simultaneously. Section 3 evaluates
robustness of the model to misspecification, while Section 4
evaluates its finite sample performance. Section 5 applies the
model to linked survey-register data on income of employment
from the German Federal Employment agency.

2. Measurement Error Estimation FromMultiple
Error-Prone Sources

Measurement error in surveys has been extensively studied,
and is often thought to stem from response, coding, process-
ing, and interviewer errors in the data collection process (see
Groves and Lyberg 2010; Biemer et al. 2017). Differences across
respondents in the size of these errors will emerge as random
noise in the observed variables. Moreover, because different
survey variables are usually reported by the same respondent,
distinct variables tend to share common errors, a phenomenon
known as “method effect” in the literature (Andrews 1984).

Because surveys contain both random and correlated
errors, Andrews (1984) adapted the “multitrait-multimethod”
(MTMM) design (Campbell and Fiske 1959) to surveymeasure-
ment error estimation. The MTMM design can be described as
a within-person experimental design crossing “traits” of interest
with measurement “methods.” To estimate survey measure-
ment error, Andrews and subsequent authors identified “traits”
with survey questions, and “methods” with variations of these
questions such as response scales (Saris and Gallhofer 2007).

This approach has led to a large literature on MTMM mod-
eling using confirmatory factor analysis (CFA) or structural
equationmodeling (SEM) to estimate the degree of random and
systematic measurement error in survey data (e.g., Alwin 1973;
Andrews 1984; Saris and Andrews 1991; Saris and Gallhofer
2007). Extensions for ordinal categorical data using the “ordinal

factor analysis” model (Muthén 1983) have also been applied
(Oberski, Saris, and Hagenaars 2008). Recently, Oberski, Hage-
naars, and Saris (2015) introduced a latent class factor (Vermunt
and Magidson 2004) MTMMmodel.

Register data errors have been studied extensively in the
statistical data editing literature (De Waal, Pannekoek, and
Scholtus 2011). In this field, the primary goal has been to
impute values suspected to be erroneous based on contextual
information (covariates). Approaches based on Fellegi and Holt
(1976) impose tables of edits while making as few changes
as possible and leaving the joint distribution intact (Winkler
1999). Multiple imputation and Bayesian approaches also aim to
impute corrected values, but do so based on a model specifying
priors on unlikely combinations, and can quantify uncertainty
due to edits (Little and Smith 1987; Ghosh-Dastidar and Schafer
2003; Kim et al. 2014). Recently, Boeschoten, Oberski, and de
Waal (2016) demonstrated how edit restrictions can be incor-
porated into a latent class model, merging the latent variable
and model-based editing approaches.

In contrast with the goal of correcting records, the goal of
estimating the extent of errors in registers has gained interest
only recently. Registers are usually created through data entry
and therefore also contain response, coding, and processing
errors. However, in addition to these errors, administrative
registers have been observed to contain errors that occur during
the normal course of administration (Groen 2012). Among
these register-specific errors are time lag, definition error,
legally motivated ceiling effects, identification error, and har-
monization error (Zhang 2012). Where registers are obtained
from the same source, method effects may also occur (Bakker
2012). Moreover, the resulting relationship between true value
and observed register value is often nonlinear, nonnormal, and
differing over different administrative units.

The current methods for the estimation of the extent of
measurement error in surveys and registers have important
drawbacks, which we address in this study. For survey error
estimation, the identification of “methods” with question
design features implies that other sources of error aside from
these specific design features are uncorrelated. For register
error estimation, existing MTMM models lack the nonlin-
earity, nonnormality, and error process heterogeneity needed
to realistically model measurement error in administrative
registers. Furthermore, the statistical data editing methods,
while useful for imputation, do not estimate the extent of mea-
surement error present in a register. In the following section, we
address these issues by presenting a novel generalization of the
MTMMmodel.

2.1. The GeneralizedMultitrait-MultimethodModel

Our technique for simultaneously estimating measurement
error in survey and administrative data builds on the multitrait-
multimethod approach. Instead of identifying “methods” with
survey question design, however, we consider the survey and
register as “methods.”Given a set of variables of interest (“traits”)
for which observed measurements exist in both the administra-
tive data and a sample survey, our goal is to estimate the degree
of measurement error in variables observed in both sources.

Let ytm denote an observed random variable measuring the
tth trait using the mth method. In the application described
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here, m will denote either the administrative or the survey
measurement.

We use generalized latent variable models (Skrondal and
Rabe-Hesketh 2004) to formulate a measurement model for
MTMM data from an administrative register and a survey
that can account for nonclassical error processes, nonnormal
distributions, and categorical data. Generalized latent variable
models are built up from (i) linear predictors; (ii) Generalized
LinearModel (GLM) links and exponential family distributions;
and (iii) conditional independence relations. To account for
possible heterogenous error process, we additionally include
(iv) a set of mixture components that allow the linear predictors
to vary over components.

The conditional independence relations we use result from
the MTMM design and are common to all MTMM models,
whereas the choice of links and distributions is flexible: for
this reason we call our approach a “generalized multitrait-
multimethod” (GMTMM) model. The flexibility in links allows
us to model nonlinearities and heteroscedasticities in the error
process, while the choice of distributions for the latent variables
allows for nonnormality of the true values. Finally, the optional
finite mixture components allow error processes to differ over
units. For example, measures obtained from different admin-
istrative databases are likely to have different errors (see Litson
et al. 2016, for an example of a continuous-data MTMMmodel
with suchmixture components). Amixture component inwhich
no relationship exists between true score and observed score
may also be useful in the presence of linkage error (Larsen and
Rubin 2001; Lahiri and Larsen 2005; Kapteyn and Ypma 2007).

The main ideas behind the GMTMMmodel are:
� Observed survey and administrative register values are
assumed to originate from a common underlying true
value (“trait”);

� The relationship between true and observed value is
modeled as a GLM regression, allowing for consider-
able flexibility in nonlinearity and the distribution of
measurement errors;

� Conditional on the true values, survey and register values
are independent measurements;

� Survey values are mutually dependent, as are register
values, allowing for correlated measurement error caused
by “method” factors;

� Differential error processes across different types of
units can be modeled as a function of unknown mixture
components.

We now describe the GMTMM in terms of (i) the linear
GLM predictors, (ii) the links and distributions, (iii) the model’s
conditional independencies, and (iv) the mixture option for
heterogenous models.

(i) Linear predictors. For continuous observed data, linear
predictors for the observed variables ytm are

νtm = τtm + λtmηt + γtmξm, (1)

where, for identification purposes, the first loading of each trait
factor ηt andmethod factor ξm is set to unity, λt1 = γ1m = 1. For
categorical observed data, linear predictors for category ytm = k
are

νktm = τktm + λktmηt + γkmξm, (2)

where the first category can be chosen as a reference by setting
τ1tm = λ1tm = γ1m = 0 (e.g., Vermunt and Magidson 2013).

At times, “paradata” may be available that were captured dur-
ing the process of survey and register data collection (Kreuter
2013). Examples for surveys include response times, behavior
codes, and vocal pitch; for registers, paradata have not been
widely studied, but might include the age of the record or the
quality control budget of the department that produced it, if
this differs across records. Where such data are informative
about the measurement error process, they can be included as
covariates in the linear predictor and allowed to interact with
the latent “trait” variable. Denoting the paradata covariate as z,
the linear predictor then becomes

νtm = τtm + λtmηt + γtmξm + δtmz + βtmzηt , (3)

allowing for both a shift (δtm) and a different measurement
relationship (βtm) across values of the paradata covariate z. To
simplify the discussion below, we will omit such covariates from
the likelihood.

(ii) Links and distributions. Each of the observed and latent
variables is assigned a distributional “family” and a link func-
tion g(·) connecting the linear predictor to the expectation of
the response ytm is chosen,

g(E[ytm|ηt , ξm]) = νtm,

or g(E[yktm|ηt , ξm]) = νktm, (4)

depending on whether the observed variable is continuous or
categorical. Different observed variables may be assigned differ-
ent link functions and distributions.

We denote the choice of the conditional distribution of
the observed responses given the latent variables as fy :=
p(ytm|ηt , ξm)with parameter vector θy. Similarly, the multivari-
ate distribution of the latent “true score” variables is denoted fη
with parameters θη and the distribution of the latent “method”
variables fξ with parameters θξ . Depending onwhether the vari-
ables to which they refer are continuous or categorical, fy, fξ ,
and fη may be probability density or probability mass functions.

A possible extension, which we do not consider here, is
to condition the true score distribution fη on covariates that
define edit restrictions (see Boeschoten, Oberski, and de Waal
2016, for an application of this idea to latent class models). For
example, if η represents “married” (1) versus “not married”
(0), fη could be chosen as a logistic regression on a binary
covariate “age < 16” (1) versus “age ≥ 16” (0), possibly with
fixed strongly negative regression coefficient. This would then
impose the edit restriction that married persons must be age 16
or above. Estimating the coefficient from data would impose a
“soft edit” (De Waal, Pannekoek, and Scholtus 2012).

(iii) Conditional independencies. The specification of the
homogenous generalized latent variable model is completed
with assumptions of conditional independence that are neces-
sary for identification of the model parameters from observ-
ables. These assumptions mirror those of the linear MTMM
model.

Assumption 1. The observed variable ytm is conditionally inde-
pendent of all other observed variables given its trait factor ηt
and method factor ξm.
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Assumption 1 implies that the joint conditional distribution
of observed given latent variables can be factored into the
univariate conditional distributions, that is,

p(y|η, ξ, θ) =
∏
t,m

fy(ytm|ηt , ξm, θy). (5)

Assumption 2. The latent method factors ξ are mutually inde-
pendent and independent of the trait variables η.

Assumption 2 implies that the latent variable joint distribu-
tion can be factored into

p(ξ, η|θ) = fη(η|θη)
∏
m

fξ (ξm|θξ ). (6)

Note that there may still be dependencies among the latent trait
variables in the vector η.

Homogenous GMTMM likelihood. When the error process is
thought to be homogenous, the marginal likelihood p(y|θ) is
p(y|θ)

=
∫ ∫ [

fη(η|θη)
∏
m

fξ (ξm|θξ )
∏
t,m

fy(ytm|ηt , ξm, θy)
]
dηdξ.

(7)

where assumptions 1 and 2 are used and the integral is defined
as a sum for discrete latent variable distributions.

(iv) Heterogenous error processes. For heterogenous error
processes, in which a mixture of error processes is thought to be
present, define p(y|S, θs) as the component-specific marginal
likelihood, with component specific parameters θs. Typically,
it is the measurement parameters that are thought to differ
over components, that is, the linear predictors are given an
additional subscript νtm,s.

An example of heterogenous error results from linkage error:
similar to the regression model suggested by Lahiri and Larsen
(2005), in mislinked records the register would be unrelated
to the true value of the survey respondent, which can be mod-
eled by specifying a two-component mixture with λtm,2 = 0.
Another example occurs when administrative delays occur for
some units but not others, so that τtm,s, γtm,s, and λtm,s differ.
The number of mixture components may be selected using
standard methods such as comparison of Bayesian informa-
tion criterion (BIC) or Akaike information criterion (AIC);
(McLachlan and Peel 2004).

To model such differences, we introduce an unobserved
discrete variable S with categories equal to the number of
components, so that the marginal likelihood of the observed
data becomes

p(y|θ) =
∑
S

p(S)p(y|S, θs). (8)

Since the mixture proportions p(S) are typically unknown, this
implies an additional |S| parameters in θ to be estimated.

2.2. Identification and Estimation of GMTMMModels

Consistent estimates of the parameters θ can be obtained from
observations on three traits from linked survey-register data
when these parameters are identifiable. The appendix shows that

all parameters of the homogenous GMTMM model are locally
identifiable almost everywhere in the parameter space (see All-
man, Matias, and Rhodes 2009) under mild assumptions, given
linked survey and register measures of three variables (“traits”).

For heterogenous error processes, identifiability remains
an open problem analytically. Even when local identifiability
does occur almost everywhere, in practical applications the
information matrix can be observed to approach singularity
(“empirical underidentification;” Kenny and Kashy 1992).
Specifically, this occurs when the maximum of the likelihood
lies close to a point that violates one of the assumptions outlined
in the appendix. Considering this issue and pending analytical
results for heterogenous GMTMMmodels, we suggest to verify
(1) empirical identification on data at the converged solution
by examining the rank of the information matrix numerically,
and (2) following Forcina (2008), to verify invertibility of the
information matrix numerically at a large number of random
parameter values.

Standard estimation procedures for generalized latent vari-
able models can be used to estimate the GMTMM model (e.g.,
Skrondal and Rabe-Hesketh 2004, chap. 6). The most general
is to use standard optimization algorithms to maximize the
marginal likelihood from Equation (7) or (8). For certain mod-
els, such as latent class MTMMmodels, direct maximization of
the marginal likelihood may become unstable. An expectation-
maximization (EM) algorithm (McLachlan and Krishnan 2007)
or Markov chain Monte Carlo (MCMC) sampling of latent
variables and parameters can be used by considering the latent
variables ξ, η, and S to be missing data.

Certain special cases of GMTMM models, including the
examples given above, can be estimated using standard software
for latent variable modeling such as Latent Gold (Vermunt and
Magidson 2013) or GLAMM (Rabe-Hesketh, Skrondal, and
Pickles 2004), that implement this estimation strategy. More-
over, specialized efficient estimation procedures already exist
for certain special cases of the GMTMM model. For example,
the linear factor analysis MTMM model can be formulated as
a covariance structure model with a closed-form marginal like-
lihood (Bollen 1989). The ordinal factor analysis (cumulative
probit) model can be similarly dealt with by first computing
polychoric correlation coefficients (Muthén 1983). Such mod-
els can be fit using standard software for structural equation
modeling. Other possible combinations of choices may require
specialized software, or can be implemented in general-purpose
software such as Stan (Carpenter et al. 2017). An example of a
GMTMMmodel that requires such additional effort is provided
in the online supplement with accompanying Stan code.

This section introduced a generalized multitrait-
multimethod model that can be used to estimate measure-
ment error when at least two separate measures of at least
three different phenomena are available. The GMTMM
model can deal with nonnormality of true values, nonlin-
earity and heteroscedasticity of errors, and the existence of
unknown groups that exhibit differential measurement error.
It is therefore applicable to estimating measurement error
in administrative register data and surveys simultaneously.
It is also more generally applicable to situations where such
error structures are thought to exist in multiple error-prone
sources.
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3. Asymptotic Robustness to Misspecification

The GMTMM model relies on assumptions of independence.
When these assumptions are violated, an important question
is the extent to which such violations affect the estimates. This
section therefore studies the asymptotic sensitivity of GMTMM
model estimates to misspecifications of the independence
assumptions.

To study robustness, we examine the asymptotic bias of a
misspecified GMTMMmodel. Two key assumptions are exam-
ined: (1) the assumption that traits and methods are marginally
independent; and (2) the assumption that methods are mutually
marginally independent. We study true models, M, say, that
violate these assumptions to different degrees, and examine
how much asymptotic bias occurs under misspecified models,
M, that make both assumptions. Following Kuha andMoustaki
(2015), this asymptotic bias can be obtained by maximizing
the expectation of the misspecified likelihood, pM, under the

correct modelM ,

θ̂M = argmax
θ

EM[pM(y|θ)]. (9)

We accomplish this by studying a fully categorical three-trait,
two-method GMTMMmodel, in which all traits, methods, and
observed variables are binary variables. This specification is con-
venient for two reasons. First, as argued by Allman, Matias, and
Rhodes (2009), properties of discrete latent variable models will
generalize approximately to continuous-data models. Second,
the binary formulation of the model makes it feasible to maxi-
mize Equation (9) by enumerating all possible response patterns
of y and their expectation under the true model. After calculat-
ing these for each condition, a misspecified GMTMMmodel is
fit using expectation-maximization to the true-model expected
proportions (see also Rotnitzky and Wypij 1994; Heagerty and
Kurland 2001; Biemer 2011, who use a similar approach to
study sensitivity to misspecification in other types of models).

The GMTMMmodel we study has six binary indicators with
a logistic link function,

P(Ytm = 1|ηt , ξm) = [
1 + exp(τtm + λtmηt + γmξm)

]−1
.

(10)
The latent variables themselves are binary variables with amulti-
nomial distribution parameterized using the log-linear model

P(η1 = k1, η2 = k2, η3 = k3, ξ1 = l1, ξ2 = l2)

= exp
(
μk1k2k3l1l2

)
∑

k′
1k′

2k′
3l ′1l ′2

exp
(
μk′

1k′
2k′

3l ′1l ′2

) , (11)

where

μk1k2k3l1l2 =
3∑

t=1

αtkt +
2∑

m=1

κmlt

+φ12η1,k1η2,k2 + φ13η1,k1η3,k3 + φ23η2,k2η3,k3

+ψ(tm)
11 η1,k1ξ1,l1 + ψ

(tm)
21 η2,k2ξ1,l1 + ψ

(tm)
31 η3,k3ξ1,l1

+ψ(tm)
12 η1,k1ξ2,l2 + ψ

(tm)
22 η2,k2ξ2,l2 + ψ

(tm)
32 η3,k3ξ2,l2

+ψ(mm)
12 ξ1,k1ξ2,k2 ,

with the latent variables “effects-coded” as ηt , ξm ∈ {−1,+1}.
In this log-linear model, the first two lines, involving the latent
variable log-linear intercepts α and trait-trait dependencies φtt ′
correspond to parameters of the standard GMTMMmodel. The
last two lines contain additional parameters ψ(tm), correspond-
ing to trait-method dependencies, and ψ(mm), corresponding
to method-method dependencies. In a standard GMTMM
model, these parameters would be set to zero, correspond-
ing to the assumptions of trait-method independence and
method-method independence.

To study sensitivity of the parameter estimates to misspecifi-
cation of trait-method ψ(tm) and method-method dependency
ψ(mm), we vary the following factors:

� The size of the log-linear trait-method dependencies:
ψ(tm) ∈ {−1,−0.5,−0.2, 0, 0.2, 0.5, 1};

� The size of the log-linear method-method dependency:
ψ(mm) ∈ {−1,−0.5,−0.2, 0, 0.2, 0.5, 1};

� The size of the log-linear trait slope: λtm ∈ {1, 2, 4};
� The size of the log-linear method slope: γtm ∈ {0.5, 1.0}.
All log-linear intercepts are set to zero. The trait-trait

log-linear dependencies are set to φ12 = −2, φ23 = 2, φ13 = 1.
The parameter values of the true models M were chosen

to correspond to a very wide range of plausible situations. For
example, the setting λtm = 1 corresponds to an approximate
reliability (Pearson correlation between observed variable and
trait) of 0.50, while the highest setting λtm = 4 corresponds to
a reliability of about 0.96. The reliability therefore varies from
terrible to excellent. Similarly, the method effect expressed as
a Pearson correlation varies between zero and 0.2, which was
indicated to be a commonly encountered situation in con-
tinuous data by Saris and Gallhofer (2007). For trait-method
and method-method dependencies, less guidance is available,
but it appears plausible that such dependencies, when present,
would not be much stronger than the dependencies among
the substantive latent variables. The chosen range (−1, 1) can
maximally shift a probability by about 0.5, which appears to be
a reasonably strong dependency.

Crossing all factors yields a 7 × 7 × 3 × 2 full factorial
design with 294 conditions. For each condition, we generate
the expected proportions under the true model pM(y|θ) and
maximize the likelihood of the misspecified model M, which
incorrectly assumes trait-method and method-method inde-
pendence, yielding biased parameter values. The asymptotic
bias is then defined as the difference between these values and
the true values. The outcomes of interest are asymptotic bias in
(1) the trait slopes λtm, (2) the method slopes γtm, and (3) the
trait-trait dependencies φtt ′ .

The full tables of results from all 294 conditions are avail-
able in the online appendix. An ANOVA of the bias in each
of the three outcomes of interest is shown in Table 1. This
table shows mean squares for the bias in the three outcomes
of interest, using a model with main effects as well as second-
order interactions between the misspecification and loading
size factors. This summary demonstrates that the largest
deviations in the asymptotic bias are accounted for by the trait-
method dependency ψ(tm) and trait loading λtm. GMTMM
estimates appear to be most sensitive to these factors and their
interaction.
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Table . ANOVA with main effects and second-order interactions. The trait-method
dependencyψ(tm) and trait loading λtm account for the largest mean square.

Mean square for bias in...

df λtm γtm φtt ′

ψ(tm)  .  .
ψ(mm)  . . .
λtm  .  .
γtm  .  .
ψ(tm) × λtm  .  .
ψ(tm) × γtm  .  .
ψ(mm) × λtm  . . .
ψ(mm) × γtm  . . .
Residuals  . . .

To illustrate the size of the asymptotic bias and demonstrate
how misspecification relates to it, Figure 1 plots the true trait-
method dependency ψ(tm) against the asymptotic bias for the
three main outcomes. The columns of this figure correspond
to the three outcomes of interest: respectively, asymptotic bias
in the trait-trait dependency, the method slopes, and the trait
slopes. The rows correspond to conditions with different values
of the trait slope. Each plot in the figure shows amisspecification
on the horizontal axis, and the incurred asymptotic bias on the
vertical axis. Boxplots show the distribution of the bias, while
the solid lines connect the median biases encountered.

Figure 1 demonstrates the effect of incorrectly assuming traits
and methods to be independent. As expected, at the points cor-
responding to correctly specifiedmodels (intersections of dotted
lines), no bias occurs. However, as misspecification increases
in either direction, the parameter estimates of a misspecified
model will incur some bias. The figure shows that the trait-trait
dependency estimates (first column) are most strongly affected
by this misspecification. This bias is attenuated as the measure-
ment becomes better (rows), but still considerable at the most
extreme values of T-M dependency. The method slopes (second
column) are less strongly affected, and appear strongly biased

only at the extremes. Finally, the trait slopes, while also affected
by this misspecification, do not appear highly sensitive to it.

Figure 2 shows the effect of incorrectly assuming methods to
be mutually independent: it plots the same results as Figure 1 as
a function of the true method-method dependence,ψ(mm). The
flatness of the median bias lines of this figure relative to those in
Figure 1 shows that the estimates are rather robust tomisspecifi-
cation of the dependency structure amongmethods.As themea-
surement improves (lower rows), this robustness also increases.

The robustness study performed here demonstrates that
GMTMM models may be most sensitive to the assumption of
zero trait-method dependency. However, serious biases were
only observed at relatively large trait-method dependencies.
GMTMM parameter estimates appear to be relatively robust to
the assumption of zero method-method dependency. Finally,
the parameters of primary interest, the method and trait load-
ings, were less affected by either type of misspecification than
the parameters specifying the joint distribution of true values
(“traits”).

4. Simulation

We demonstrate some key finite sample properties of the
maximum likelihood estimates of GMTMM model parame-
ter estimates using a simulation study. Since there are many
possible GMTMM models that fall within this framework, we
choose a model and parameter values based on our application
to linked survey-register dataset obtained from the German
Federal Employment Agency, and summarize bias and standard
error accuracy under different conditions corresponding to
sample sizes.

The response model chosen for the observed variables is a
censored regression in which the unobserved trait and method
variables are the regressors and the dependent variables are six
observed indicators corresponding to the crossing of three traits
and two methods. Thus, the response model for the observed

Figure . Robustness of the GMTMM model to misspecification of trait-method dependency ψ(tm) . Columns show the effect of misspecification on each of three types
of parameters. Rows correspond to conditions with different strengths of the trait slope λtm .
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Figure . Robustness of the GMTMM model to misspecification of method-method dependency ψ(mm). Columns show the effect of misspecification on each of three
types of parameters. Rows correspond to conditions with different strengths of the trait slope λtm .

variable ytm measuring trait t with methodm is

ytm =
{
0, if y∗

tm ≤ 0
y∗
tm, otherwise , (12)

where y∗
tm follows the linear factor model,

y∗
tm = τtm + λtmηt + γtmξm + εtm, εtm ∼ N(0, σε,tm).

(13)
The latent variables themselves are discrete interval-level

variables with a multinomial distribution parameterized using
the log-linear model

P(η1 = k1, η2 = k2, η3 = k3) = exp
(
μk1k2k3

)
∑

k′
1k′

2k′
3
exp

(
μk′

1k′
2k′

3

) , (14)
P(ξm = k) = exp(κmk)∑

k′ exp(κmk′ )
, (15)

where μk1k2k3 = ∑3
t=1 αtkt + φ12η1,k1η2,k2 + φ13η1,k1η3,k3 +

φ23η2,k2η3,k3 .

This model, depicted in Figure 3, yields the following set of
parameters, corresponding to the observed variable intercepts
τtm, trait loadings λtm, method loadings γtm, error variances
σε,tm, as well as the latent variable log-linear intercepts αtk, and
κtk and latent log-linear associations φtt ′ :

θ = ({αtm}, {κmk}, {τtm}, {λtm}, {γtm}, {σε,tm}, {φtt ′ }
)′
.

Furthermore, corresponding to the selected model from our
application, we choose three categories for the latent trait and
two for the latent method variables:

|ηt | = 3, |ξm| = 2.

To ensure parameter values are realistic, we set them
to the maximum-likelihood estimates found in our
application, and vary the sample size across conditions,
n ∈ {200, 500, 1000, 2000}. The results of simulating data
from this model and analyzing them using the GMTMMmodel
are summarized in Table 2.

Figure . A generalized multitrait-multimethod (GMTMM) model for three “traits” using administrative data and a survey as measurement “methods.” The example traits
signify personal income from full-time, part-time, and other kinds of employment over a certain period.
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Table . Simulation results for a generalized MTMM model, under different sample sizes. Shown are the true values of the parameters, the simulation bias, and the ratio
between the average simulation standard error and standard deviation over replications (“s.e./sd”).

Sample size n

   

Par. True Bias s.e./sd Bias s.e./sd Bias s.e./sd Bias s.e./sd

α11 . . . − . . − . . − . .
α12 . − . . . . . . . .
α21 . . . . . . . . .
α22 − . − . . − . . − . . − . .
α31 − . . . − . . − . . − . .
α32 − . − . . . . . . . .
κ11 . . . . . . . . .
κ21 − . − . . − . . − . . − . .
τ11 . . . . . − . . − . .
λ11 . − . . − . . − . . . .
γ11 − . − . . − . . − . . − . .
τ21 . − . . − . . . . . .
λ21 . . . − . . − . . . .
γ11 . . . . . − . . − . .
τ31 . . . . . − . . − . .
λ31 − . − . . − . . . . . .
γ31 . − . . − . . − . . − . .
τ12 . . . . . . . . .
λ12 . . . − . . − . . − . .
γ12 − . − . . . . − . . − . .
τ22 . . . . . − . . . .
λ22 . − . . − . . . . . .
γ22 − . − . . . . . . − . .
τ32 . . . − . . . . . .
λ32 − . − . . − . . − . . − . .
γ32 − . − . . − . . − . . − . .
φ12 . . . . . . . . .
φ13 − . − . . − . . − . . − . .
φ23 − . . . . . . . . .
σ
ε,11 . . . . . − . . − . .
σ
ε,21 . − . . − . . − . . − . .
σ
ε,31 . − . . − . . − . . − . .
σ
ε,12 . − . . − . . − . . − . .
σ
ε,22 . − . . . . − . . . .
σ
ε,32 . − . . − . . − . . − . .

Table 2 summarizes the bias, defined as the difference
between the true parameter value and the simulation average of
the maximum likelihood estimate, as well as the ratio between
the average simulation standard error and standard deviation
over replications (“s.e./sd”).

It can be seen in Table 2 that under all conditions, the
bias is small for most parameters and the estimated standard
errors accurately reflect the simulation standard deviation.
Exceptions to this good performance are the latent variable
intercepts (e.g., α21 and κ11) in the condition with the smallest
sample size (n = 200). Although the bias in this condition is
smaller for the other latent intercept parameters, there is a
clear pattern of overestimating the size of the largest class and
underestimating that of the other classes. This bias disappears
as the sample size grows larger. The other parameters do not
appear to show any bias, even at the smallest sample size.

Table 2 also shows the performance of information-based
standard errors as an estimate of simulation standard deviation.
The standard errors perform well when sample size is at least
500. In the smallest sample size condition, some of the standard
errors tend to underestimate the simulation standard deviation,
which will lead to undercoverage of confidence intervals.

In summary, while the performance of the maximum-
likelihood estimates is generally good, bias in some of the

parameter estimates and many of the standard errors occurred
when the sample size is small (n = 200). Therefore, we recom-
mend to use the GMTMM model with samples of at least 500
linked cases.

5. Application to Administrative Data on Income

We applied the GMTMM model to a unique dataset provided
by the research institute of the German Federal Employment
Agency (Bundesagentur für Arbeit, BA). The BA’s normal oper-
ations include job placement and payment of benefits, and for
these purposes it maintains an extensive database of citizens’
(un)employment histories dating back to 1975. This database
covers German employees who are subject to social security
contributions as well as recipients of entitlements, comprising
about 86% of the overall German labor force. Excluded from the
register are most civil servants, the self-employed, and others
who have never been in contact with the Agency, such as the
never-employed.

Both survey data and the BA’s register data are routinely
used for labor market and policy research—especially those
on income from employment. For consenting respondents, we
gained IRB approval to link administrative record data from
the Agency with a telephone survey conducted by the Institute
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Table . Fit of GMTMMmodels for the measurement error in administrative and survey data on income. Rows correspond to models with different numbers of categories
K for the latent true score (“trait”) variable ηt .

Error process

Heterogenous (|S| = 2) Homogenous (|S| = 1)

K LL BIC AIC # par. LL BIC AIC # par.

 − . . .  − . . . 
 − . 9825.9 9596.6  − . . . 
 − . . .  − . . . 

NOTE: Models with the lowest overall AIC and BIC values are indicated in bold.

for Employment Research (Institut für Arbeitsmarkt-und Berufs-
forschung, IAB). Restricted access to the anonymized linked
survey-administrative data was provided at the Agency’s offices
(IAB Beschäftigtenhistorik (BEH) Version 09.01.00, Nürnberg
2012); the raw data cannot be made publicly available for legal
reasons.

Particularly of interest are the BA’s records on income from
full-time, part-time, and “marginal” employment. “Marginal”
employment, also known as a “Minijob,” is a common form of
low-income employment in Germany, yieldingmonthly income
of up to 400 Euro; at or below this maximum, the employee is
exempt from income taxes and social security (at the time of
data collection).

However, exactly because the income data were collected
for the BA’s administrative purposes, measurement error can
become a serious issue for research in spite of reporting accu-
racy, because measurement errors in administrative data need
not come from the reporting itself (Groen 2012). For example,
although the employers will presumably fulfill their mandate
to report accurately, when compiling historical records there
may be mismatches and time lapses in an individual’s record.
Similarly, self-employment periods are absent from the records,
again leading to a mismatch in “last part/full-time job,” for
instance. These issues will lead to random and correlated
measurement error for research purposes.

To obtain the survey measurement, a stratified sample of
2400 respondents was asked to provide information on income
from full-time, part-time, and marginal employment (see
Eckman et al. 2014, for further description of the sample design).
The survey had a response rate (AAPOR RR1) of 19.4%. In the
following analyses, we accounted for the sample stratification
using complex sampling adjustments. Of the respondents, 2284
(95%) provided informed consent to record linkage between
the survey and the administrative registers. This linkage could

Table . Estimated relationships (λtm and γtm) between categories of the latent
trait variables η and the expected observation of log-income from full-time, part-
time, and marginal employment using the administrative and survey measures.

Trait (λtm) Method (γtm)

     Overall

Administrative data (log-income)
Full-time . . . .
Part-time . . . .
Marginal . . . .

Survey data (log-income)
Full-time . . . . . .
Part-time . . . . . .
Marginal . . . . . .

be performed using unique person identifiers, so that it seems
reasonable to assume no linkage errors were present. By linking
the administrative data to the survey data, we thus obtained
MTMM designs with three traits and two methods.

The register provides income data only at the level of employ-
ment spells. This typically corresponds to an annual basis if a
respondent was employed at the same employer throughout
a given year. The survey, however, explicitly asks for the last
monthly income from gainful employment which is the stan-
dard reference period used in most German surveys. Assuming
that salaries are paid evenly throughout the employment spell,
the administrative data were converted to a monthly basis.

5.1. Estimates of Reliability andMethod Effects in Survey
and AdministrativeMeasures

To estimate the quality of the administrative register as well
as the survey answers on income data, we adapt the model to
recognize several aspects of the measurement process:

� Following the econometrics literature (Tobin 1958),
censoring in income is accounted for;

� The relationship between true income and reported
income is thought to be nonlinear (Kim and Tamborini
2014);

� Previous studies linking survey and register data (Scholtus,
Bakker, and Van Delden 2015) suggested that there is a
subgroup of respondents for whom the two measures cor-
respond exactly, whereas for others they do not, possibly
suggesting a heterogenous error process;

� There is a strong incentive to misreport one’s income from
a “Minijob” as being equal to or below 400 euros, since at
the time of the survey this was the legal maximum income
to qualify for tax exemption and social security exemption
(see sec. 8 SGB [Social Security Code]).

Due to these factors, a linear Gaussian MTMM will not
suffice. Instead, we choose fy to be the standard censored
regression equation, use the “nonparametric” latent class factor
analysis formulation of fξ and fη to allow for nonlinearity
(Oberski, Hagenaars, and Saris 2015), and investigate whether
an additional mixture component of S in which the response
is unrelated to the true value fits the data more closely than a
homogenous error structure. This model is no longer a standard
structural equation model but can be estimated in the software
for latent class (factor) analysis Latent GOLD 5.0 (Vermunt and
Magidson 2013). Program input can be found in the Appendix.

The latent class factor analysis model does not impose a
distribution on the latent trait and method factors, but instead
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Figure . Reliability and method effect estimates for survey data, and reliability estimates for administrative register data on income from full-time, part-time, and
“marginal”employment.

approximates these distributions by discrete interval-level
latent variables whose category sizes are estimated from the
data (Vermunt and Magidson 2004). Moreover, the possibility
of a heterogenous error structure suggests the presence of an
additional discrete nominal latent variable S. Since the number
of categories for the latent trait, method, and error structure
variables is unknown, we compare the fit of models with dif-
fering numbers of categories for each of these. Since increasing
the number of categories of the method factors and the error
structure variables beyond two never improved the model, we
only show these comparisons formodels with differing numbers
of categories K for the latent trait variables (ηt ), with (|S| = 2)
and without (|S| = 1) a heterogenous error structure.

Table 3 shows the fit of these models in terms of log-
likelihood (LL), BIC, and AIC, as well as the number of
parameters these models have. The model with three latent
categories and a heterogenous error process fit the data best
in terms of BIC and AIC. This result suggests that there may
indeed be differing error processes for different respondents.
Since themodel fit did not improve when increasing the number
of latent categories from three to four, we selected the three-
class heterogenous model. In other words, we approximate the
distribution of true latent income with a discrete three-category
latent variable for which the category sizes are estimated. We
also allowed for some proportion of the observations to be
unrelated to the true value, for example, because some fixed
value (such as 400 euros) was always chosen in this group
regardless of the true income.

Table 4 shows the expected means of the administrative
and survey measures of log-income for different categories of
the latent trait and method variables. The table illustrates how
the observed measures are estimated by the model to relate to
the respective latent variables. The relationships in Table 4 are
marginalized over the two categories of the error process latent
variables S. Thus, the table shows how the relationship holds
for a respondent whose error process is not known in advance.
The estimated proportions of units in each class of S are 0.95
and 0.05. In other words, about 5% (not shown in the table) are
estimated to belong to the latent category in which a random
value is given—that is, a value that is unrelated to the trait or
method variables.

The model is no longer linear, so that reliability and method
effect coefficients, which represent (linear) correlations are
more difficult to interpret. However, it is possible to calculate

the model-implied reliabilities cor(ytm, ηt ) and method effects
cor(ytm, ηm). These estimates, with confidence intervals based
on bootstrapped standard errors, are shown in Figure 4. The fig-
ure shows that while the administrative data on income from
full-time and marginal jobs are estimated to be superior to the
survey measures, the survey measure has a stronger linear cor-
relation with true income level from part-time work. A possible
explanation for this difference is a change in mandatory report-
ing procedures regarding part-time employment in the year
2011.On the other hand, the surveymeasures do exhibit a strong
method dependence, whereas again the administrative register
measures were estimated to have no such method dependence.

In summary, we found for official administrative data
obtained from the German Federal Employment Agency that
the reliability of both survey and administrative data was far
from perfect. Estimated relationships between these observed
variables and other variables of scientific interest will therefore
be biased. Moreover, for some of these measures, method effects
were found. Such method effects, when ignored, will cause
spurious relationships among the true income score (“traits”)
of interest. When using administrative data, method depen-
dence may be less of a concern. To prevent biases arising from
measurement error in substantive analyses of income data,
correction methods for known error processes may be needed
(e.g., Saris and Gallhofer 2007; Vermunt 2010; Skrondal and
Kuha 2012).

6. Discussion and Conclusion

We showed how the quality of survey and administrative data
can be evaluated using generalized multitrait-multimethod
(GMTMM) models. This approach is an improvement over
existing methods, which assume that either the survey or the
administrative data are perfect measures. A general framework
for data quality evaluation was introduced. This framework is
more suited than existingMTMM approaches to administrative
data particularities such as categorical measurement, nonlin-
earities, heterogenous error processes, and nonnormality. We
demonstrated the use of GMTMMmodels by applying them to
administrative and survey data on income of employment from
the German Federal Employment Agency. A simulation study
demonstrated good properties of the maximum-likelihood
estimates for a GMTMM model with moderate sample sizes,
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and a robustness study indicated that parameter estimates are
not highly sensitive to identifying assumptions.

A clear advantage of our approach is that it allows for
the presence of measurement error in both the survey and the
administrative register. Furthermore, using the administrative
register as a second measure in the MTMM design has an addi-
tional advantage over classical MTMM designs using repeated
survey measures. When repeated survey measures are used,
survey respondents must answer questions on the same topic
twice and may remember their answer, creating dependencies
that are not modeled (Alwin 2011), although van Meurs (1995)
provided some evidence that this might not occur in practice
when sufficient time is allowed between the repetitions. The
problem of memory bias does not occur, however, when the
measurement methods are administrative and survey data
collected separately. Therefore, in addition to allowing for the
estimation of measurement error in administrative records, the
MTMMdesign using linked survey-register data is an attractive
method of estimating measurement error in survey variables.

Some limitations of our work remain. First, our model
assumed that traits and methods are independent. While the
robustness study indicates that the parameters of primary inter-
est may not be highly sensitive to this assumption, it cannot
rule out that very strong dependencies between traits and
methods will produce bias. We note that it is possible to define
a subclass of identifiable GMTMM models that do allow for
dependencies among traits and methods, and between methods
(linear MTMM models are known to lie outside this subclass,
e.g., Kenny and Kashy 1992). However, this subclass will rely
heavily on higher-order moments for identification, which in
practice may lead to high-variance estimates. In future studies,
it will be of interest to investigate the conditions under which
such models can be applied.

Second, we did not discuss model fit evaluation. This issue
is not specific to GMTMM modeling, so that the standard
machinery available for global and local fit assessment in gen-
eralized latent variable models can be applied to GMTMM
modeling (see, e.g., Skrondal and Rabe-Hesketh 2004; Oberski
and Vermunt 2013; Oberski, Van Kollenburg, and Vermunt
2013). Second, little is known about the small sample properties
of GMTMM model estimates. While simulation results by
Scholtus, Bakker, and Van Delden (2015) on the linear MTMM
model were positive, other types of GMTMM models were
not evaluated. This remains a topic for future research. Finally,
in our application on German data, unique identifiers were
available that allowed for close linkage between the survey and
register. In other applications, however, such identifiers may not
be available for legal reasons or theymay not exist. In such cases,
linkage error will occur as well as measurement error. As indi-
cated, the heterogenous error processmay be employed tomodel
such errors in a fashion similar to the observed multiple regres-
sion models of Lahiri and Larsen (2005). However, evaluating
the performance of this solution and the interaction between
linkage andmeasurement error remains a topic for future study.

SupplementaryMaterials
The supplementary materials contain the online appendix, including pro-
gram input and an identifiability proof; Mathematica notebook addendum
to the identifiability proof; and Full code and results of the robustness study.
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