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“The bias I am most
nervous about is the
bias of the human 
feedback raters“
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Measurement

Are the labels we have the right ones?



Ideal:
• Comprehension
• Retrieval
• Integration
• Mapping

Less than Ideal:
• Satisficing
• Acquiescence 

Response Behavior



Study: Instrument Effects
3000 tweets (Davidson et al 2017)

5 instrument conditions

3 labels / tweet-condition

~45,000 total labels
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Training Set
2,250 tweets
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Test Set
750 tweets
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Four Sets of Results

LABELS MODELS PREDICTIONS ORDER
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Kern et al. 2023. “Annotation Sensitivity: Training Data Collection Methods Affect Model Performance”



Models
Offensive Language
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Kern et al. 2023. “Annotation Sensitivity: Training Data Collection Methods Affect Model Performance”



Models
Hate Speech

A

B

C

D

E

A B C D E

Kern et al. 2023. “Annotation Sensitivity: Training Data Collection Methods Affect Model Performance”



Predictions

Kern et al. 2023. “Annotation Sensitivity: Training Data Collection Methods Affect Model Performance”

Condition  Offensive Language          Hate Speech



Order

Beck et al. 2024. “Order Effects in Annotation Tasks: Further Evidence of Annotation Sensitivity”



Order by 
Condition
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Beck et al. 2024. “Order Effects in Annotation Tasks: Further Evidence of Annotation Sensitivity”



Takeaways
How you collect annotations matters

Label instrument has impacts on model predictions



Representation

Who provides labels?



Nonresponse Bias in Surveys

is biased estimate of !𝑦 !𝑌



Selection Bias in Labels

Labelers > 30 Labelers < 30 Combined

Specificity
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Al Kuwalty et al “Identifying and Measuring Annotator Bias 
Based on Annotators’ Demographic Characteristics”



Demonstration
https://recant.cyens.org.cy/

Perikleous et al “How Does the Crowd Impact the Model? A Tool for Raising 
Awareness of Social Bias in Crowdsourced Training Data”

https://recant.cyens.org.cy/


Solutions to Selection Bias?

Left side: Diversify labeler pool

Right side: Train labelers to label uniformly

Weights: Adjust labels to match population



Takeaways
Lots of work to do

• Awareness of selection bias

• Test hypotheses 
• When sel. bias matters 
• Labeler motivations

• Use weights in training

Transparency

• Instrument Screenshots

• Order of observations

• Training materials

• Labeler characteristics



“Everyone wants to do the 
model work, not the data work”
Sambasivan et al, 2021  doi:10.1145/3411764.3445518
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